FLEXible Electric Machines LABoratory

Profformance+ 2025 Online Award Ceremony, June 4, 2025

Author: Filip Jukić

FLEX-EMLAB team members

- University of Zagreb Faculty of Electrical Engineering and Computing (UniZG FER)
- Department of Electric Machines, Drives and Automation:

1) Project initiator:

• Prof. Stjepan Stipetić, PhD

2) Designers:

- Filip Jukić, PhD
- Dražen Kubatović, M. Eng.

3) Technical support:

- Asst. Prof. Luka Pravica, PhD
- Assoc. Prof. Martina Kutija, PhD

Main topic(s)

In accordance with: EHEA/EU, national and institutional priorities

1) Main category:

• Student-centered course design

2) Main horizontal priority

Sustainability

Key words: electrical machines, sustainable energy conversion,

practical engineering education, portability, modularity, cost-effectiveness

Faculty of Electrical Engineering and Computing

Student-Centered Course Design

Challenge/problem – objective

Challenge/problem	Objective
Theory – practice gap	Enabling hands-on learning
Adaptation, transport, set-up	Modular and compact design
High-cost equipment	Cost-effective design

Methodology, outcomes, lessons (1)

- 1) Methodology:
 - focused on merging theory with hands-on engineering practice;
 - Curriculum-Driven: response to new 2018/2019 curriculum;
 - Safe, Modular and Smart Design:
 - standard industrial components: Siemens, Baldor, etc.;
 - easy to use and maintain: wiring diagrams and user manuals;
 - enables flexible configurations;
 - safe experimentation:
 safety banana plugs, switches, mechanical protections;
- 2) Tools and techniques used:
 - Advanced Design Tools: standard tools EPLAN and SolidWorks
 - Custom & Safe Components: 3D custom printed parts
 - Conceptual design: 2019
 - Tested: 2020
 - Improvements: additional mini control box

Methodology, outcomes, lessons (2)

- 3) Outputs, outcomes and impact:
 - Proven Impact in Teaching: used since 2020; > 150 students per year
 - Laboratory exercises: EEC and FOEMC courses DC and IM
 - Built for Students: foster hands-on engineering, collaboration, task management
 - Resilient & Portable: can be easy adjusted for different environments, needs, etc.
- 4) Lessons learned:
 - Educational Focus & Integration;
 - Preplanning: to cover all requirements;
 - Feedbacks: to overcome all shortcomings;
- 5) Adaptability and transferability:
 - Adaptable for All Contexts: internationalization;
 - Customizable and Easy to Implement: inclusion;
 - Sustainable, Affordable and Long-Term Use: lower income institutions;

Video

UNIVERSITY OF ZAGREB

Faculty of Electrical Engineering and Computing

FLEX-EMLAB

Compact Testbench for Electric Machines

Thank you for your attention!

